Fives Pillard, leading engineers & suppliers of combustion solutions

fivespillard

Analyzers & Instruments

- → Novaflam® burner
- → Return of experience
- → Design criteria

Novaflam® burner

Fives Pillard 2

The NOVAFLAM® burner

From the ROTAFLAM®... to the NOVAFLAM® burner...

ROTAFLAM®

Burners with axial & swirl channels adjustable at site

ROTAFLAM® Version2

Addition of "slot effect"

NOVAFLAM®

"Tailor-made" engineered design Allows much easier adjustments

- → Main features :
 - \rightarrow (single air supply)
 - → burner tips engineered according to process data

NEW PATENTS

EP 06.778673.1 of June 26,2006 EP 07.290663.9 of May 23, 2007 FR0852836 of April 28, 2008 FR2009/050593 of April 07, 2009

The NOVAFLAM ® burner

- → A MONOCHANEL BURNER : Axial and Radial air are supplied by a same burner channel
- → MORE EFFICIENT IN TERM OF IMPULSE AND SWIRL : *Limited loss of pressure in the burner*
- → EASY TO UNDERSTAND, TO USE, TO ADJUST : 2 parameters to be adjusted

Fives Pillard – March 2011 4

The NOVAFLAM® burner

AXIAL AIR INJECTED IN THE FLAME BY HOLES

- □ CONSTANT CROSS SECTION
 □

ADJUSTABLE RADIAL AIR ANGLE

- ⇒ NO NEED TO CHANGE RADIAL AIR

 QUANTITY FOR FLAME SHAPING
- **⇒ VERY EASY TO ADJUST FLAME WIDTH**

COAL AND CENTRAL AIR CHANNELS:

⇒ IDENTICAL TO THE ROTAFLAM® RV2

Fives Pillard – March 2011 5

- → BY MOVING BACK THE RADIAL TIP, WE ADJUST THE FLAME WIDTH
- → BY CONTROLLING THE PRIMARY AIR PRESSURE, WE ADJUST THE BURNER IMPULSE

NEW PATENTS

EP 06.778673.1of June 26,2006 EP 07.290663.9 ofMay 23, 2007 FR0852836 of April 28, 2008 FR2009/050593 of April 07, 2009

→ OUR TYPICAL DESIGN CRITERIA:

MOMENTUM

4-5 N/MW : FO/ GAS (around 7-8 % PA, stoechiometric basis)

6-7 N/MW : COAL, PETCOKE, ANTHRACITE (around 9-10 % PA, stoech basis)

8-9 N/MW : HIGH ASF SUBSTITUTION (around 11-12 % PA, stoech. basis)

SWIRL

Usual: 0.10 < swirl < 0.3

AXIAL & RADIAL CROSS SECTION REPARTITION

%AXIAL / % RADIAL repartition from 50 / 50 to 70 / 30

IMPULSION AND SWIRL CALCULATION

SPECIFIC IMPULSE CALCULATION

AXIAL MOMENTUM (N) flame hardness Gx(N) = Q(kg/s) x Vout axial (m/s)

 G_x total (N) = G_x axial (N) + G_x radial (N) + G_x central (N)

SPECIFIC MOMENTUM (N/MW) to compare burners with different output heat output

I total $(N/MW) = G_x \text{ total } (N) / P (MW)$

IMPULSION AND SWIRL CALCULATION

SWIRL NUMBER CALCULATION

TANGENTIAL MOMENTUM (N) amount of swirl motion

$$G_t$$
 total (N) = G_x radial (N) x tan (α)

α swirl angle on the radial tip

SWIRL NUMBER number without dimension for swirl characterization

Rg: gyration radius of swirl channel

$$rg = \frac{2(re^3 - ri^3)}{3(re^2 - ri^2)}$$

De : equivalent theoritical opening diameter giving with the same flow the same momentum

$$De = \frac{2(Qma + Qmr)}{\sqrt{(\pi \times \rho m \times Gx)}}$$

NOVAFLAM® RECENTLY COMMISSIONNED:

NOVAFLAM WITH HIGH ASF SUBSTITUTION:

- Lumbres and Dannes, France

NOVAFLAM WITH HIGH ASF SUBSTITUTION:

- PHOENIX, Germany

NOVAFLAM WITH "DIFFICULT" KILN (RING FORMATION):

- HOLCIM Rochefort, France

NOVAFLAM FOR LARGE CAPACITY LINES:

- TPI SARABURI, Thaïland – 3 x 9000 TPD lines

NUMEROUS REFERENCES WITH LOW QUALITY COAL:

- In ASIA: 40 burners in operation

NOVAFLAM FOR INDIA:

- DARLAGHAT

NOVAFLAM FOR INDIA:

- SITUPARAM

Fives Pillard 12

HOLCIM LUMBRES, France

HOLCIM LUMBRES France

(January 08)

	TYPE	WET LINE
KILN	PROD.(TPD)	800
	SEC. AIR (°C)	750
FUELS		COAL
BURNER REPLACEMENT TARGET		INCREASE IMPREGNATED SAW DUST %

HOLCIM LUMBRES, France (commissioning in jan. 08)

		BEFORE	AFTER
BURNER	TYPE	3 CHANNEL	NOVAFLAM
	PA (%)	10	8-9
	PA pressure (mbar)	220	130 - 170
	Momentum (N/MW)	8	5 - 6

CONFIRMED RESULTS

SAWDUST MULTIPIED x 2
(limited by sawdust availibility)
Better kiln stability
Less primary air,
Burner tips are in perfect condition

HOLCIM DANNES, France (commissioning Sept. 08)

HOLCIM DANNES France

(September 08)

	TYPE	LEPOL GRATE, SATELLITE COOLER	
KILN	PROD.(TPD)	1 200	
	SEC. AIR (°C)	750	
FUELS		MIX COAL-PETCOKE+SLUDGE IMPREGNATED SAWDUST / ANIMAL MEAL SOLVENT	
BURNER REPLACEMENT TARGET		INCREASE IMPREGNATED SAW DUST %	

HOLCIM DANNES, France (commissioning Sept. 08)

		BEFORE	AFTER
BURNER	TYPE	3 CHANNEL	NOVAFLAM
	PA (%)	10	9
	PA pressure (mbar)	220	130-180
	Momentum (N/MW)	8	Around 6

	SAWDUST + 70 % (4T/h currently)
CONFIRMED RESULTS	NO MORE RING FORMATION LESS PRIMARY AIR

PHOENIX, Germany

PHOENIX Germany

(February 10)

	TYPE	DRY, GRATE COOLER	
KILN	PROD.(TPD)	1 300	
	SEC. AIR (°C)	800	
FUELS		COAL FLUFF	
BURNER REPLACEMENT TARGET		MORE SIMPLE BURNER	

PHOENIX, Germany

		BEFORE	AFTER
	TYPE	ROTAFLAM V2	NOVAFLAM
	PA (%)	10	8-9
BURNER	PA pressure (mbar)	350 / 250 Axial air fan 90 KW Radial fan 52 KW	150-200 Common fan 90 KW
	Momentum (N/MW)	8	4,5-6
	Swirl	20°/?	25° / 0.3
	Electrical consumption (kW)	142 KW	90 KW
PROCESS	NOx Urea consumption (kg/hr) CO (ppm) O2 Kiln inlet (%) Kiln inlet temp. (°C)	470 150 0 5 852	420 70 0 5 816

CONFIRMED RESULTS

70 % FLUFF WITH A BURNER EASIER
TO OPERATE

Reduction by 50% of expensive waste oil consumption to recover a weak kiln

Phoenix Germany: Electrical consumption

Simulation in <u>Germany</u>

Electrical Consumption

90 kW instead of 142 kW leads to a cost saving of about :

0.052 MW x 8000 h/year x 92 \$/MWh (price - Germany -June 2008) = 38 300 \$ / year ==> 30 000€/year

- CO2 Saving:

```
404 kg/CO2 /MWh (GHG Protocol -- Germany )
=> 404 * 0.052 * 8000 = 168,8 t CO2/year ==> only 14€/ton CO2 (current CO2 price)
==> 2 300 € /Year (Low)
```

With the same operating condition the <u>cost saving is about 32 000 € /Year</u>.

Phoenix Germany: Electrical consumption

- If similar situation in <u>Switzerland</u> (high % hydro electricity => high electrical cost)
 - Electrical Consumption

90 kW instead of 142 kW leads to a cost saving of about :

0.052 MW x 8000 h/year x 154 \$/MWh (price EIA - Switzerland -June 2010) = 64 000 \$ / year ==> 50 000 € /Year.

- CO2 Saving:

26 kg/CO2 /MWh (GHG Protocol - - Switzerland) ==> 26 * 0.052 * 8000 = 10,8 t CO2/year ==> only 14€/ton CO2 ==> 364 € (negligeable)

With the same operating condition the <u>cost saving is about 50 000 € /Year</u>.

PYROLISIS BURNER

NOVAFLAM (ASF + COAL)

	TYPE	LEPOL GRATE, SATELLITE COOLER	
KILN	PROD.(TPD)	1 200	
	SEC. AIR (°C)	1000 MIX COAL-PETCOKE+SLUDGE	
FUELS		MIX COAL-PETCOKE+SLUDGE IMPREGNATED SAWDUST / ANIMAL MEAL SOLVENT + PYROLYSIS GAS	
BURNER REPLACEMENT TARGET		SUBSTITUE 20 % COAL BY PETCOKE WITHOUT RING FORMATION	

		BEFORE	AFTER
	TYPE	ROTAFLAM	NOVAFLAM
	PA (%) stoec.bas	17,5	11,5-13
BURNER	PA pressure (mbar)	300 (axial) / 170 (rad fan)	170- 220
	Swirl number	0.06	0.05
	Momentum (N/MW)	12	7 - 8,5
	Estim .Elec cons. (kW)	80	45-60
EMISSION	NOx kiln inlet (mg/Nm3@10%O2)	800	800

	PROCESS MORE STABLE	
CONFIRMED RESULTS	Up to 30% COAL SUBSTITUTION, FLAME MORE COMPACT	
	LESS PRIMARY AIR, 25-40 % LESS ELECTRICAL CONSUMPTION	

WHAT ABOUT THE NOX EMISSION?

 <u>If NOx isn't a major issue</u>, burner optimisation (less primary air flow) is sufficient to keep NOx at the same level than the ROTAFLAM

NOx kiln inlet HOLCIM ROCHEFORT (mg/Nm3@10%O2)

NOVAFLAM® LOW NOX DESIGN

If NOx is a major issue The NOVAFLAM can be specifically designed to reduce NOx

- → The **NOVAFLAM LOW NOx** applies the following principles:
 - Specific tip design
 - Lower primary air flow
 - High pulverized fuel concentration
 - Minimum "slot" effect

First NOVAFLAM LowNox in Kazakstan

- → Opinion of D.Mac Phail, plant manager :
 - " When compared to the ROTAFLAM burner, the implementation of the new NOVAFLAM burner contributes:
 - To allow using 30 % petcoke
 - To improve kiln stability
 - To achieve a flame centred in the kiln, with little impact from the Pyrolysis burner located above it
 - To have an easily adjustable burner, well mastered by the operators
 - To reduce the primary air rate & electrical consumption

Fives Pillard – March 2011 25

TPI POLENE, Thailand, 3 Novaflam® 160 MW

	TYPE	DRY LINES (Kiln Diameter = 5.6 m)	
KILN	PROD.(TPD)	8 500 - 9 000 (Max.)	
	SEC. AIR (°C)	1 100	
FUELS		COAL (24 T/h) / RDF (18 T/h)	
BURNER REPLACEMENT TARGET		HIGHER CLINKER QUALITY FIRING FLUFF (NOT YET STARTED)	

TPI POLENE, Thailand, 3 Novaflam® 160 MW

		BEFORE	AFTER
	TYPE	OTHER'S	NOVAFLAM
	PA (%)	9	12.5*
BURNER	PA pressure (mbar)	110	200
	swirl		0.22
	Momentum (N/MW)	4	8

RESULTS
(After 1 year operation)

- → HIGHER CLINKER QUALITY
- →KILN MORE STABLE
- → 5 % LOWER SPECIFIC CONSUMPTION

^{*} Primary air % higher than usual for coal firing, as design is for fluff firing

TPI POLENE, Thailand, precalciner burner design

RDF pipe (future)

ZAOZHUANG Wofeng, China

ZAOZHUANG WOFENG China

(January 10)

	TYPE	DRY, GRATE COOLER	
KILN	PROD.(TPD)	5500	
	SEC. AIR (°C)	1100	
FUELS		COAL	
BURNER REPLACEMENT TARGET		DECREASE SPECIFIC CONSUMTION	

ZAOZHUANG Wofeng, China

		BEFORE	AFTER
BURNER	TYPE	Nanjing design	NOVAFLAM
	PA (%)	?	12
	PA pressure (mbar)	?	220
	swirl		0,23
	Momentum (N/MW)	?	8

CONFIRMED RESULTS

Lower specific consumption (760 to 740 kcal/kg)

Higher production (5600 to 5700 tpd)

DALIAN Tianrui, China

DALIAN Tianrui China

(April 10)

	TYPE	DRY, GRATE COOLER	
KILN	PROD.(TPD)	5500	
	SEC. AIR (°C)	1000	
FUELS		COAL	
BURNER REPLACEMENT TARGET		INCREASE PRODUCTION	

DALIAN Tianrui, China

		BEFORE	AFTER
BURNER	TYPE	?	NOVAFLAM
	PA (%)	?	9,5
	PA pressure (mbar)	?	210
	swirl		0,25
	Momentum (N/MW)	?	6,5

CONFIRMED RESULTS

5% Higher production

Less reducing condition (yellow clinker has disappeared)

Combustion in rotary kilns & precalciners: conclusions

→ The NOVAFLAM® burner is simple to adjust

- → The **NOVAFLAM®** burner allows:
 - a very high % of Alternative Solid Fuels
 - minimum electric consumption

33

The NOVAFLAM® burner: a lower Carbon assessment

CO₂ emission

SPECIFIC CONSUMPTION

Reduced (average 3 %) CO₂ \(\mathbb{Y}\)

USE of higher BIOMASS FUEL %

CO₂ ¬

ELECTRIC CONSUMPTION

SOLID FUEL CONVEYING LINES

Concentration can be increased Electric Consumption: less15%

PRIMARY AIR FAN

Pressure can be reduced

Flow reduced

Electric Consumption: less 30/40%

Consumed electricity Reduced!

With our warm thanks!

Fives Pillard 35